

Silicon N-Channel MOSFET

Features

- ■5.5A,400V, $R_{DS(on)}$ (Max 1.0Ω)@V_{GS}=10V
- Ultra-low Gate Charge(Typical 32nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using Winsemi's advanced planar stripe, DMOS technology. This latest technology has been especially designed to minimize on-state resistance, have a high rugged avalanche characteristics. This devices is specially well suited for high efficiency switch model power supplies, power factor correction and half bridge and full bridge resonant topology line a electronic lamp ballast.

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{DSS}	Drain Source Voltage	400	V
lр	Continuous Drain Current(@Tc=25°C)	5.5*	A
ID ID	Continuous Drain Current(@Tc=100℃)	2.9*	А
Ідм	Drain Current Pulsed (Note1) 22*	А
Vgs	Gate to Source Voltage	±30	V
Eas	Single Pulsed Avalanche Energy (Note 2) 330	mJ
Ear	Repetitive Avalanche Energy (Note	1) 7.4	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3	3) 4	V/ns
Pp	Total Power Dissipation(@Tc=25℃)	38	W
PD	Derating Factor above 25℃	0.3	W/℃
TJ, Tstg	Junction and Storage Temperature	-55~150	$^{\circ}$
TL	Channel Temperature	300	$^{\circ}$

^{*}Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter		Value	Linito	
		Min	Тур	Max	Units
Rajc	Thermal Resistance, Junction-to-Case	-	-	3.3	°C/W
RQJA	Thermal Resistance, Junction-to-Ambient	-	-	62	°C/W

Electrical Characteristics (Tc = 25° C)

Charact	eristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage current		Igss	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA
Gate-source breakdown voltage		V(BR)GSS	I _G = $\pm 10 \mu A$, V _{DS} = 0 V	±30	-	-	٧
Drain cut-off curr	ent	loss	V _{DS} = 400 V, V _{GS} = 0 V	-	-	1	μA
Drain-source voltage	breakdown	V _{(BR)DSS}	I _D = 250 μA, V _{GS} = 0 V	400	-	-	V
Break Voltage Te	emperature	ΔBV _{DSS} / ΔT _J	I _D =250μA, Referenced to 25°C	-	0.4	-	V/℃
Gate threshold voltage		V _{GS(th)}	V _{DS} = 10 V, I _D =250 μA	2	-	4	٧
Drain-source ON resistance		RDS(ON)	Vgs = 10 V, ID = 2.75A	-	0.83	1	Ω
Forward Transconductance		gfs	V _{DS} = 50 V, I _D = 2.75A	-	4.5	-	S
Input capacitance		Ciss	V _{DS} = 25 V,	-	550	720	
Reverse transfer	Reverse transfer capacitance		V _G S = 0 V,	-	23	30	pF
Output capacitance		Coss	f = 1 MHz	-	85	110	
	Rise time	tr	V _{DD} =200 V,	-	15	40	
Switching time	Turn-on time	ton	ID =5.5A	-	55	120	no
	Fall time	tf	Rg=25Ω	-	85	180	ns
	Turn-off time	toff	(Note4,5)	-	50	110	
Total gate charge (gate-source plus gate-drain)		Qg	V _{DD} = 320 V, V _{GS} = 10 V,	-	32	38	20
Gate-source charge		Qgs	ID =5.5 A	-	4.3	5.7	nC
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	14	22	

Source-Drain Ratings and Characteristics (Ta = 25° C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	IDR	-	-	-	5.5	Α
Pulse drain reverse current	IDRP	-	-	-	22	Α
Forward voltage (diode)	VDSF	IDR = 5.5 A, VGS = 0 V	-	1.4	1.5	٧
Reverse recovery time	trr	IDR = 5.5 A, VGS = 0 V,	-	265	530	ns
Reverse recovery charge	Qrr	dlor / dt = 100 A / µs	-	2.32	-	μC

Note 1.Repeativity rating :pulse width limited by junction temperature

2.L=18.5mH,I_{AS}=5.5A,V_DD=50V,R_G=25\Omega,Starting T_J=25 $^{\circ}\mathrm{C}$

3.Isp \leq 5.5A,di/dt \leq 300A/us, VdD \leq BVdss,STARTING TJ=25 $^{\circ}$ C

4.Pulse Test: Pulse Width≤300us,Duty Cycle≤2%

5. Essentially independent of operating temperature.

This transistor is an electrostatic sensitive device

Please handle with caution

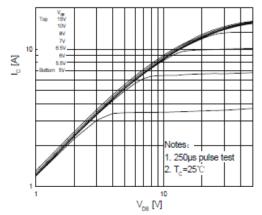


Fig. 1 On-State Characteristics

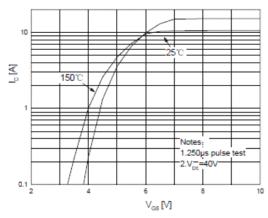


Fig.2 Transfer Characteristics

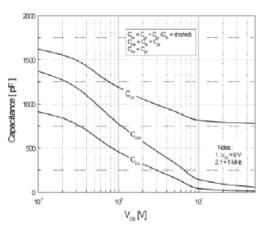


Fig.3 Capacitance Variation vs Drain Voltage

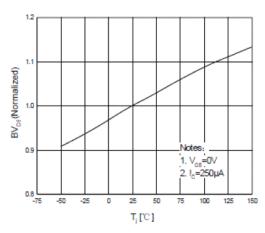


Fig.4 Breakdown Voltage Variation vs Temperature

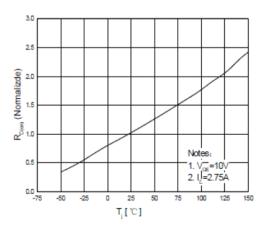


Fig.5 On-Resistance Variation vs Junction Temperature

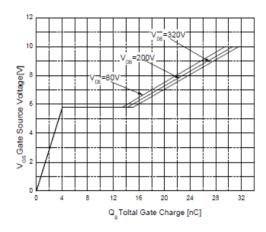
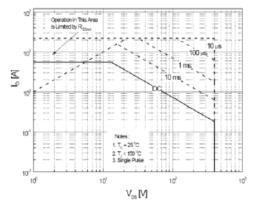



Fig.6 Gate Charge Characteristics

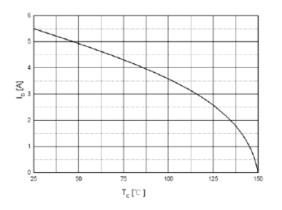


Fig.8 Maximum Drain Current vs Case Temperature

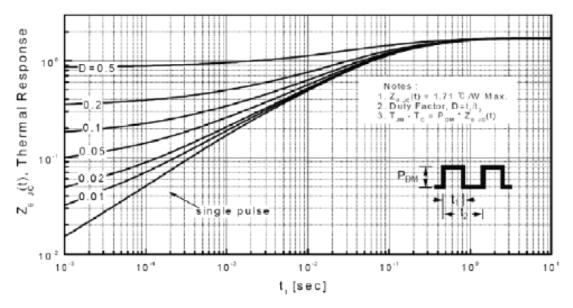


Fig.9 Transient Thermal Response Curve

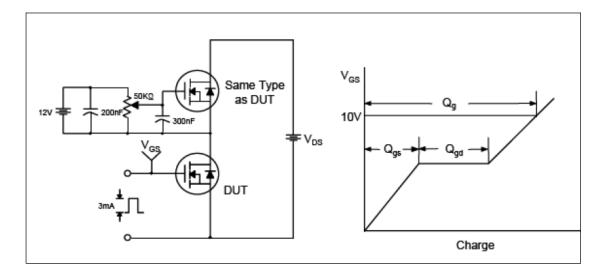


Fig.10 Gate Test Circuit & Waveform

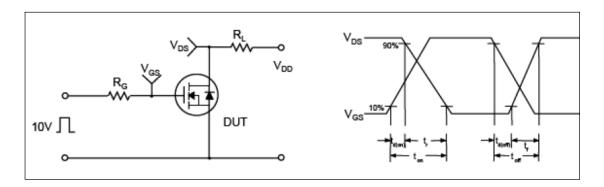


Fig.11 Resistive Switching Test Circuit & Waveform

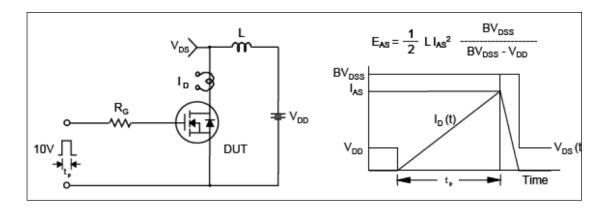


Fig.12 Unclamped Inductive Switching Test Circuit & Waveform

П

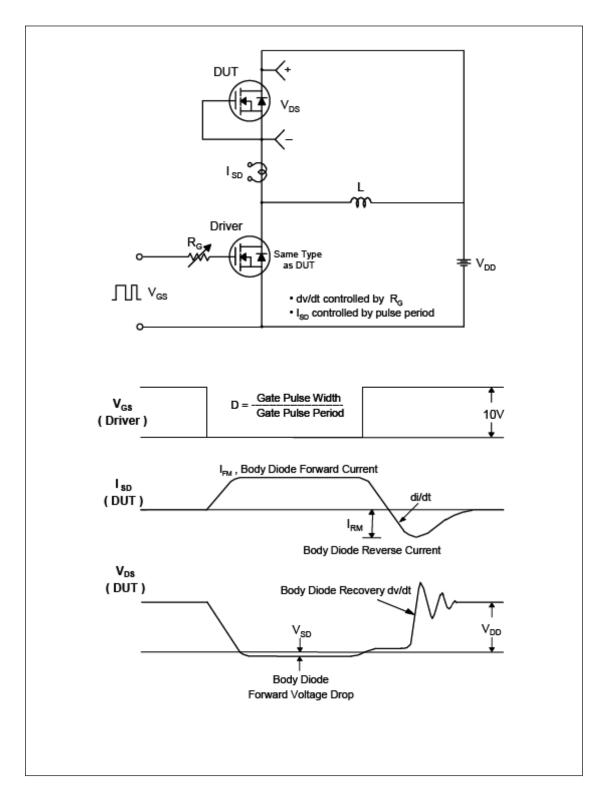
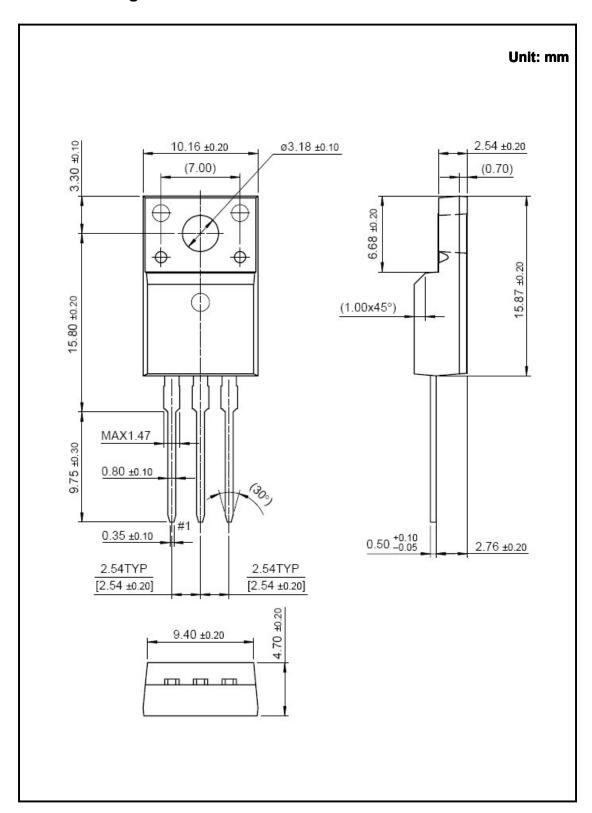



Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

Ш

TO220F Package Dimension

